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1 Introduction

Convergent matrix integrals of the form

Ẑ =

∫

Hn

dM e−N Tr V (M) (1.1)

are very usefull in many areas of physics (statistical physics, mesoscopic physics, quantum

chaos,. . . ) and in mathematics (probabilities, orthogonal polynomials,. . . ) [11, 35]. Peo-

ple are mostly interested in their asymptotic behavior in the large n limit (and n/N ∼

constant).

There is another form of matrix integrals, called formal-matrix integrals, which come

from combinatorics (2d quantum gravity for physicists [10, 15, 18]). They are generating

functions for counting discrete surfaces (also called ”maps”) of given topology. Formal
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matrix integrals are only asymptotic series, they are not convergent in general, and almost

by definition, they always have a large n expansion (see [18]). All the terms in their

large n expansion are known [17, 22], and are deeply related to algebraic geometry and

integrable systems. They have many applications to combinatorics, and string theory in

physics [34, 36].

In this article, we use the analogy between the two types of matrix integrals, and

generalizing the method of [9], we propose an asymptotic formula for convergent matrix

integrals, including oscillations to all orders:

Ẑ ∼ e
P

g N2−2gFg

(

Θ +
1

N

(

F ′
1Θ

′ +
F ′′′

0

6
Θ′′′

)

+ . . .

)

∼ e
P

g N2−2gFg
∑

k

∑

li

′
∑

hi

N
P

i(2−2hi−li)

k!l1! . . . lk!
F

(l1)
h1

. . . F
(lk)
hk

∂
P

liΘ (1.2)

where Θ is a theta function, i.e. a periodic function, this is why we call Θ and its derivatives

”oscillatory terms”.

Then we observe that the series containing the oscillatory terms can be resummed into

a single theta function:

Ẑ ∼ e
P

g N2−2gFg Θ



NF ′
0 +

∞
∑

k=1

N1−2ku(k), iπτ +
∞
∑

j=1

N−2jt(j)



 (1.3)

We also observe that the coefficients in front of the derivatives of Θ in eq. 1.2, are

the same which appear in the so-called ”holomorphic anomaly equations” discovered in the

context of topological string theory [8]. In other words they are related to the combinatorics

of degeneracies of Riemann surfaces.

Finally, we observe, that although we define each term of the expansion after choosing

a reference filling fraction ǫ∗, the partition function is in fact independent of that choice.

This is related to the so-called background independence problem in string theory, first

observed by Witten [38].

For the 1-hermitian matrix model (with real potential), the first term of this asymptotic

expansion

Ẑ ∼ e
P

g N2−2gFg Θ (1.4)

was derived rigorously by Deift& co [14] using Riemann-Hilbert methods, and their method

proved the existence of a whole oscillatory series containing derivatives of the Theta-

function. The same result was also obtained by heuristic physicists methods by [9]. Here,

we generalize the method of [9] and we give the exact coefficient of the whole series.

Also, in case where the genus of the Theta function is zero, there is no oscillatory

term, and one finds the so-called topological expansion Ẑ ∼ e
P

g N2−2gFg , which is well

known to coincide (in the sense of asymptotic formal series) with the generating function

for enumerating discrete surfaces [10]. In this genus zero case, the asymptotics of the

convergent matrix integral were derived by several methods and several authors [16, 30].

The coefficient of the expansion are of course the symplectic invariants of [22].
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For other convergent matrix models, for instance the 2-matrix model, such expansions

were conjectured many times [23, 24], but never proved. Here, we don’t prove it either. We

merely give all the coefficients in the formula to prove, and we explain their heuristic origin.

As we said above, the heuristic origin of the formulae presented in this article, is just

the analogy between formal and convergent matrix models.

Outline:

• In the first section, we define the convergent matrix model on generalized paths, and

write it as a sum over filling fractions.

• In the second section, we consider the formal matrix model.

• In the 3rd section we perform the sum over filling fractions, and we get Θ-functions.

• In the 4rth section we discuss the link with degenerate Riemann surfaces and holo-

morphic anomaly equations.

• In the 5th section we discuss the background independence problem.

• Section 6 is the conclusion.

1.1 Introductory example: 1 matrix model

1.1.1 Paths and homology basis

Consider a polynomial potential V (x), of degree d+ 1 = deg V , with complex coefficients.

There are many different paths γ such that the integral
∫

γ
dx e−V (x) (1.5)

is absolutely convergent. These are the paths which go to ∞ in a sector where ReV > 0,

or more precisely, the paths which connect two such sectors (see [5] for a discussion on

that, or [3]. Those considerations can be easily extended to any V such that V ′ is a

rational fraction).

Example: quartic potential V (x) = x4, we have degV = 4, i.e. there are d = 3 indepen-

dent paths, for example we choose:

1

γ
3

γ
2

γ

In this example, we have R = γ2 + γ3.

In fact, there are d = degV ′ homologically independent such paths. Let us choose

a basis:

γ1, . . . , γd (1.6)

– 3 –
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This means any (unbounded) path on which the integral
∫

γ dx e−V (x) is well defined, can

be decomposed on the basis:

γ =

d
∑

i=1

ci γi (1.7)

By definition:
∫

γ
dx e−V (x) =

d
∑

i=1

ci

∫

γi

dx e−V (x) (1.8)

In this definition, the ci’s can be arbitrary complex numbers, they don’t need to be integers.

However, if γ is itself a path, the ci’s can take only the values +1,−1, or 0.

If the ci’s are not integers, we say that γ =
∑

i ciγi is a generalized path.

1.1.2 Matrix model on a generalized path

Let γ be a generalized path. We define the set of Normal matrices on γ:

Hn(γ) =
{

M = U diag(x1, . . . , xn)U † / U ∈ U(n) , ∀i xi ∈ γ
}

(1.9)

equipped with the measure:

dM = ∆(x)2 dU dx1 . . . dxn , ∆(x) =
∏

i<j

(xj − xi) (1.10)

where dU is the Haar measure on U(n), and ∆(x) is the Vandermonde determinant, and

dx is the curviline measure along the path (if γ = x(s) , s ∈ R, is a parametrization of the

path we have dx = x′(s) ds).

Remark: Hn(R) = Hn is the set of hermitian matrices, with the usual U(n) invari-

ant measure.

Remark: in general Hn(γ) is not a group, for instance the sum of two matrices in Hn(γ)

is not in Hn(γ), and the product by a scalar is not either. Also, the ”measure” dM is not

positive, in fact it is complex.

The matrix integral on Hn(γ) is defined as follows:

Ẑ(γ) =
1

n!

∫

Hn(γ)
dM e−N Tr V (M) =

1

n!

∫

γn

dx1 . . . dxn ∆(x)2
∏

i

e−NV (xi) (1.11)

or in other words:

Ẑ(γ) =
∑

n1+···+nd=n

cn1
1 . . . cnd

d Z(n1/N, . . . , nd/N) (1.12)

where we have defined:

Z(n1/N, . . . , nd/N) =
1

n1! . . . nd!

∫

γ
n1
1 ×···×γ

nd
d

dx1 . . . dxn ∆(x)2
∏

i

e−NV (xi) (1.13)
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1.1.3 Assumption: topological expansion

First, let us assume that only g + 1 ≤ d of the ci’s are non-vanishing. We write:

∀i = 1, . . . , g , ci = e2iπνi , cg+1 = 1 , ∀i = g + 2, . . . , d , ci = 0 (1.14)

If γ is a path, the ci’s take the values ±1, and thus νi = 0 or 1/2. The vector (ν1, . . . , νg)

is going to be considered a charcateristic in a genus g Jacobian. Also, up to reverting the

orientation of γi, we can always assume that if γ is a path,

γ = path ⇒ ∀i = 1, . . . , g + 1, ci = 1 , ⇒ ν = 0 (1.15)

Hypothesis: our working hypothesis is that the basis paths γ1, . . . , γg+1 have been chosen

so that each Z(n1/N, . . . , nd/N) admits a large N topological expansion:

ln (Z(ǫ1, . . . , ǫd−1)) ∼ F (ǫ) =

∞
∑

h=0

N2−2hF (h)(ǫ) (1.16)

It is conjectured that given a (generic) potential V , and a generalized path γ, such

a ”good” basis always exists (may be not unique). In fact, for the 1-matrix model with

polynomial potential, this can be proved a posteriori from the asymptotics of M. Bertola [6,

7]. But for more general cases, it is only a conjecture, for instance for the 2-matrix model.

Now, let us explain where this hypothesis comes from, and what heuristic arguments

support it.

1.1.4 Loop equations and Virasoro constraints

It is well known that any integral defined in eq. 1.13, satisfies an infinite set of linear

equations, sometimes called ”loop equations” [15], or Virasoro constraints, or Schwinger-

Dyson equations, or Euler-Lagrange equations, and which just come from integration by

parts:

∀k ≥ −1 , Vk.Z = 0

Vk =

deg V
∑

j=1

jtj
∂

∂tk+j
+

1

N2

k
∑

j=0

∂

∂tj

∂

∂tk−j

V (x) =
∑

j

tjx
j (1.17)

They satisfy Virasoro algebra:

[Vk,Vj ] = (k − j)Vk+j (1.18)

Remark: it is important to notice that, since integration by parts is independent

of the integration paths (as long as there is no boundary term), both Ẑ(γ) and any

Z(n1/N, . . . , nd/N), ∀ni, satisfy the same set of loop equations.
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1.1.5 Formal matrix models and combinatorics of maps

Formal matrix integrals are defined as formal generating functions for enumerating discrete

surfaces (also called ”maps”, i.e. topological graphs embedded on a Riemann surface, such

that each face is a disc) of given topology. Basically, Fg is the generating function for

counting ”maps” of genus g. The generating series:

lnZformal =

∞
∑

g=0

N2−2gFg (1.19)

needs not be convergent, and in fact it is never convergent if the weights for ”maps” are

positive. It is merely a formal series, whose only role is to encode the Fg’s.

The formal matrix integrals satisfy the same loop equations, i.e. Virasoro constraints

as Ẑ(γ) and Z(n1/N, . . . , nd/N) (see [15]). In the context of combinatorics of maps, loop

equations are known as Tutte’s equations [37], and were first obtained by counting ”maps”

recursively (removing one edge at each step).

The Fg’s of formal matrix integrals have all been computed: F0 has been known for a

long time, then F1 [12], and all the Fg’s with g ≥ 2 were computed recently in [20, 22].

In fact, it was proved in [20, 22], that any solution of loop equations which has a

topological large N expansion of the form:

lnZ =

∞
∑

g=0

N2−2gFg (1.20)

can be obtained by the symplectic invariants of [22], i.e. they are encoded by a spec-

tral curve.

1.1.6 Spectral curves

Both the convergent matrix integral, and the formal matrix integral are associated to an

(algebraic) spectral curve of the form:

y2 = V ′(x)2 −
4

N

〈

Tr
V ′(x) − V ′(M)

x−M

〉

(1.21)

• For the convergent matrix integral Ẑ defined in eq. 1.11, the average < . > is taken

with respect to the measure dM e−N Tr V (M). The notion of a spectral curve, comes

from the orthogonal polynomials method of Dyson-Mehta [35], combined with the

theory of integrable systems [2]. The orthogonal polynomials satisfy an integrable

differential equation of the form ~ψ′ = D(x) ~ψ, where D(x) is a 2 × 2 matrix with

polynomial coefficients, and the spectral curve is by definition the set of eigenvalues

of D (Jimbo-Miwa-Ueno [32]), i.e.:

y2 =
1

2
Tr D(x)2 (1.22)

It was proved [4] that:

1

2
Tr D(x)2 = V ′(x)2 −

4

N

〈

Tr
V ′(x) − V ′(M)

x−M

〉

(1.23)

– 6 –
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• For the formal matrix model, and more generally, for an arbitrary solution of the

Virasoro constraints which has a topological expansion, the average < . > has a formal

meaning, and can be defined from the Virasoro generators Vk. It is not the purpose

of this article to explain where it comes from (see [15, 18]), and the spectral curve is

the algebraic equation satisfied by the ”disc amplitude”, i.e. generating function for

counting planar ”maps” with one boundary (i.e. having the topology of a discs), and

it can be proved that it satisfies:

y2 = V ′(x)2 − 4P (x) (1.24)

where P (x) is a polynomial of degree d − 1 = degV ′′, and with the same leading

coefficient as V ′.

P (x) = (d+ 1) td+1 x
d−1 +

d−2
∑

k=0

Pk x
k (1.25)

The coefficients Pk, are the conserved quantities in the context of integrable sys-

tems [2], whereas the coefficients of V ′ are called the Casimirs. The coefficients Pk

are in 1-1 correspondance with the so-called ”action variables”:

ǫi =
1

2iπ

∮

Ai

ydx , i = 1, . . . , d− 1 (1.26)

Here in the random matrix context, the ǫi’s are called filling fractions.

1.1.7 Symplectic invariants

In [22], it was proved, that given a spectral curve

E(x, y) = 0 (1.27)

(here E(x, y) = y2−V ′(x)2+4P (x), i.e. in other words, given a potential V (x) =
∑d+1

k=1 tkx
k

and a polynomial P (x) = (d+ 1) td+1 x
d−1 +

∑d−2
k=0 Pk x

k, or in other words given V ′ and

the filling fractions ǫi’s), it is possible to define an infinite sequence:

Fg(E) , g = 0, . . . ,∞ (1.28)

such that:

τ(E) = exp

∞
∑

g=0

N2−2gFg(E) (1.29)

is a solution of loop equations.

The Fg(E) were constructed in [22] for any spectral curve E(x, y) = 0, and they have

many interesting properties, for instance they are invariant under symplectic deforma-

tions of the spectral curve, and τ(E) is the τ -function of an integrable hierarchy. Their

modular properties were also studied in [22] and further clarified in [19], and they happen

to be deeply related to the so-called Holomorphic anomaly equation first found in

string theory [1, 8], and which relate the non-holomorphic part of the generating function

– 7 –
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for counting Riemann-surfaces to the contribution of degenerate Riemann surfaces (nodal

surfaces). This will play a role below.

Also, in [22], were defined the correlators:

W
(g)
k (z1, . . . , zk) , g = 0, . . . ,∞ , k = 0, . . . ,∞ , ( W

(g)
0 = Fg ) (1.30)

which are multilinear symmetric meromorphic differential forms on the spectral curve.

They also have many interesting properties, in particular they can be used to compute

derivatives of the Fg’s with any parameter on which E may depend. For instance derivatives

with respect to filling fractions are:

∂

∂ǫj
W

(g)
k (z1, . . . , zk) =

∮

Bj

W
(g)
k+1(z1, . . . , zk, zk+1) (1.31)

(where τ is the Riemann matrix of periods of the spectral curve, and Ai ∩ Bj = δi,j is a

symplectic basis of non contractible cycles, see [27, 28] for algebraic geometry).

1.1.8 Heuristic support to the conjecture

The conjecture is supported by the following facts:

• Both the convergent matrix integral Z(n1
N , . . . ,

ng+1

N , 0, . . . , 0) defined in eq. 1.13, and

the formal matrix integral Zformal(ǫ1, . . . , ǫg) satisfy the same loop equations.

• Since loop equations are linear, the space of solutions is a vector space.

• For given V ′, both the convergent integral Z(n1
N , . . . ,

ng+1

N , 0, . . . , 0), and the formal

Zformal(ǫ1, . . . , ǫg) are specified by the same number of parameters, i.e. g parameters

(indeed n1 + · · · + ng+1 = n, so that only g of them are independent).

Those observations support the idea that there exists a good basis of the vector space of

solutions, such that each basis function is at the same time formal and convergent, i.e.

there exists a set of basis paths γi, such that Z(n1
N , . . . ,

ng+1

N , 0, . . . , 0) admits a topologi-

cal expansion.

We do not prove this conjecture in this article, but we take it as an asumption.

1.2 Generalization 2-Matrix model

All this can be extended to a larger context, for instance the 2-matrix model, or the chain

of matrices, or the matrix model coupled to an external field.

2 matrix model. Consider 2 polynomial potentials V1 and V2, such that deg V1 = d1 +

1,deg V2 = d2 + 1. There are d1 × d2 independent paths on C × C on which the following

integral is absolutely convergent:

∫ ∫

γ
dx dy e−V1(x)−V2(y)+xy , γ =

d1d2
∑

i=1

ciγi (1.32)

where each γi is a product of a path in the x−plane and a path in the y−plane.

– 8 –
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Then, similarly to the 1-matrix case, we can also define a matrix integral on a gener-

alized path (see [23]):

Ẑ(γ) =

∫

Hn×Hn(γ)
dM1 dM2 e−N Tr (V1(M1)+V2(M2)−M1M2) (1.33)

which satisfies:

Ẑ(γ) =
∑

n1+···+nd=n

cn1
1 . . . cnd

d Z(n1/N, . . . , nd/N) (1.34)

where we have defined:

Z(n1/N, . . . , nd/N) =
1

n1! . . . nd!

∫

γ
n1
1 ×···×γ

nd
d

dx1 ∧ dy1 . . . dxn ∧ dyn (1.35)

∆(x)∆(y)
∏

i

e−N(V1(xi)+V2(yi)−xiyi)

The 2-matrix model generalized integral satisfies loop equations (which form a W-

algebra instead of Virasoro), which also come from integration by parts, and are indepen-

dent of the path. In particular, each Z(n1/N, . . . , nd/N) satisfies the same loop equations.

There is also a formal 2-matrix model, which was introduced as a generating function

for bi-colored discrete surfaces, it was called the ”Ising model on a random lattice” [31].

Almost by definition, the formal 2-matrix model has a topological expansion:

lnZ =
∑

g

N2−2gFg (1.36)

The formal 2-matrix model satisfies the same loop equations as the convergent one, and

the solution of loop equations was found in [13, 21, 22], and it was found that the Fg’s are

again the symplectic invariants of [22].

Matrix model with external field. The same features also hold for the matrix models

in an external field. The famous example is the Kontsevich integral [33], also called ”matrix

Airy function”:

ZKontsevich =

∫

dM e−N Tr M3

3
−MΛ (1.37)

whose topological expansion is the combinatorics generating function computing intersec-

tion numbers.

Summary. In all cases, there is a convergent matrix model defined on generalized paths,

and there is a formal matrix model which computes the combinatorics of some graphs.

Both the convergent and formal model obey the same set of loop equations.

The formal model has a topological expansion

lnZ =
∑

g

N2−2gFg (1.38)

where the Fg’s are the symplectic invariants of [22], computed for some algebraic spectral

curve E(x, y) = 0. And in all cases the dimension of the homology basis of paths on which

– 9 –
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the integral is absolutely convergent, is the same as the genus g of the spectral curve, i.e.

the number of filling fractions:

γ =

g+1
∑

i=1

ciγi ⇔ ǫi =
1

2iπ

∮

Ai

ydx , i = 1, . . . , g (1.39)

In all those cases, the method we describe below should work.

2 Formal matrix model

Now, assume that Z(ǫ1, . . . , ǫd−1) has a topological asymptotic expansion:

ln (Z(ǫ1, . . . , ǫd−1)) = F (ǫ) =

∞
∑

h=0

N2−2hFh(ǫ) (2.1)

Each Fh must then be a solution of formal loop equations, and therefore it is given by the

formulae of [22], and therefore each Fh is analytical in the ǫi’s.

Then, we choose arbitrarily a ”prefered” filling fraction ǫ∗, and perform the Taylor

expansion:

Fh(ǫ) =
∞
∑

k=0

1

k!
F

(k)
h (ǫ− ǫ∗)k , F

(k)
h =

∂kFh

∂ǫk
(ǫ∗) (2.2)

Remark: we don’t write the indices for readability, but F
(k)
h is a tensor. For readability

we write the formulae as if there were only one variable ǫ, i.e. g = 1, but in fact we mean:

Fh(ǫ) =

∞
∑

k=0

1

k!

∑

i1,...,ik

F
(k)
h i1,...,ik

k
∏

j=1

(ǫ− ǫ∗)ij , F
(k)
h i1,...,ik

=
∂kFh

∂ǫi1 . . . ∂ǫik
(ǫ∗) (2.3)

but for simplicity we shall write eq. 2.2, and we leave to the reader to restore the indices

if needed.

The derivatives of Fg, are given by eq. 1.31 (see [22]):

F
(k)
h i1,...,ik

=
∂l

∂ǫi1 . . . ∂ǫik
Fh =

∮

Bi1

. . .

∮

Bik

W
(h)
k (z1, . . . , zk) (2.4)

In particular, it is well known (see [22]), that

F ′
0 =

∮

B

ydx (2.5)

and 1
2iπF

′′
0 = τ is the Riemann matrix of periods (see [27, 28] for introduction to algebraic

geometry) of the specral curve E , i.e.

1

2iπ

∂2F0

∂ǫi∂ǫj
= τi,j = τj,i =

∮

Bi

duj (2.6)

where duj is the normalized basis of holomorphic differentials [27, 28] on E :
∮

Ai

duj = δi,j (2.7)
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And thus we have (formally):

Z(ǫ) = Z(ǫ∗) eiπN2(ǫ−ǫ∗)τ(ǫ−ǫ∗) e2iπN2ζ(ǫ−ǫ∗)
∑

k

∑

li

∑

hi

N
P

i(2−2hi)

k!l1! . . . lk!
F

(l1)
h1

. . . F
(lk)
hk

(ǫ− ǫ∗)
P

li (2.8)

where we the sum carries only on li ≥ 1 and 2 − 2hi − li < 0 for all i.

One should notice that the exponential is now at most quadratic in the ǫ’s.

3 Oscillations

Now we are going to perform the sum of eq. 1.12:

Ẑ(γ) =
∑

n1+···+ng+1=n

cn1
1 . . . c

ng+1

g+1 Z(n1/N, . . . , nd/N) (3.1)

where

γ =
∑

i

ciγi , ci = e2iπ νi (3.2)

Since the filling fractions ǫi = ni
N take integer values (up to a 1/N factor), we have to

perform a sum of exponentials of square of integers. Such sums are called theta functions.

They play a key role in algebraic geometry. Let us recall a few properties [27, 28].

3.1 Theta functions

We define the Θ-function:

Θ(u, t) =
∑

n∈Zg

e(n−Nǫ∗)u e(n−Nǫ∗)t(n−Nǫ∗) e2iπ nν (3.3)

It clearly satisfies:
∂Θ

∂t
=
∂2Θ

∂u2
(3.4)

It is related to the usual Jacobi-theta function:

Θ(u, t) = θ−Nǫ∗,ν(
u

2iπ
,
t

iπ
) e2iπνNǫ∗ (3.5)

where (−Nǫ∗, ν) is called the characteristics. The Jacobi theta function with characteristics

(a, b) is defined by:

θa,b(u, τ) =
∑

n

e2iπ(n+a)(u+b) eiπ(n+a)τ(n+a) = θ0,0(u+ b+ τa, τ) eiπaτa e2iπa(u+b) (3.6)

It takes a phase after translation along an integer lattice period n+ τm:

θa,b(u+ n+ τm, τ) = e2iπ(an−mb) θa,b(u, τ) e−2iπmu e−iπmτm (3.7)
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3.2 Convergent matrix model

We thus have:

Ẑ(γ) ∼
∑

n

e2iπ nν Zformal(n/N)

∼
∑

n

cn1
1 . . . c

ng

g Z(n1/N, . . . , ng/N, 0, . . . , 0) (3.8)

The sum carries on integers ni ≥ 0 and
∑

i ni = n. Therefore ng+1 = n −
∑g

i=1 ni is not

independent from the others. Another remark, is that in that sum we expect that only the

vicinity of some extremal ni will dominate the sum, and that values of the ni’s far from

the extremum should give an exponentially small contribution. That asumption allows to

extend the sum to ni ∈ Z.

Then, we use the Taylor expansion of eq. 2.8, and we find (again we use tensorial

notations):

Ẑ(γ) ∼ Z(ǫ∗)
∑

n∈Zg

e2iπ
P

i νini eiπ(n−Nǫ∗)τ(n−Nǫ∗) e2iπNζ(n−Nǫ∗) (3.9)

∑

k

∑

li>0

∑

hi>1−
li
2

N
P

i(2−2hi−li)

k!l1! . . . lk!
F

(l1)
h1

. . . F
(lk)
hk

(n −Nǫ∗)
P

li

where we recognize the Θ-function and its derivatives

Ẑ(γ) ∼ Z(ǫ∗)
∑

k

∑

li>0

∑

hi>1−
li
2

N
P

i(2−2hi−li)

k!l1! . . . lk!
F

(l1)
h1

. . . F
(lk)
hk

∂
P

liΘ

∂u
P

li

∣

∣

∣

∣

∣

u=NF ′

0,t=iπτ

(3.10)

This formula is the main result presented in this article.

For instance the first few terms in powers of N−1 are:

Ẑ(γ) ∼ Z(ǫ∗)

(

Θ +
1

N

(

F ′
1Θ

′ +
F ′′′

0

6
Θ′′′

)

(3.11)

+
1

N2

(

F ′′
1

2
Θ′′ +

(F ′
1)

2

2
Θ′′ +

F ′′′′
0

24
Θ(4) +

F ′
1 F

′′′
0

6
Θ(4) +

(F ′′′
0 )2

72
Θ(6)

)

+ . . .

)

3.3 Resummation

The expansion of formula . 3.10 can be resummed into a single Θ-function. We want to

write it as:

Ẑ(γ) = Z(ǫ∗)Θ(u, t) (3.12)

where

u = NF ′
0 +

∞
∑

h=1

N1−2hu(h) , t = iπτ +

∞
∑

h=1

N−2ht(h) (3.13)

For instance, one easily finds the first orders:

u(1) = F ′
1 +

F ′′′
0

6

Θ′′′(u(0), iπτ)

Θ′(u(0), iπτ)
(3.14)

t(1) =
F ′′

1

2
+
F ′′′′

0

24

Θ′′′′(u(0), iπτ)

Θ′′(u(0), iπτ)
+
F ′

1 F
′′′
0

6

(

Θ(4)

Θ′′
−

Θ
′′′

Θ′

)

+
(F ′′′

0 )2

72

(

Θ(6)

Θ′′
−

Θ′′′2

Θ′2

)

(3.15)
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The Taylor expansion of eq. 3.12 reads (and we use eq. 3.4):

Ẑ(γ) = Z(ǫ∗) Θ

(

NF ′
0 +

1

N
u(1) + . . . , iπτ +

1

N2
t(1) + . . .

)

= Z(ǫ∗)
∑

m,n

(m+ n)!

m!n!
(u− u(0))m(t− t(0))n

∂m+2n

∂um+2n
Θ(u(0), t(0))

= Z(ǫ∗)
∑

m,n

∑

k1,...,km

∑

j1,...,jn

(m+ n)!Nm−2
P

ki−2
P

ji

m!n!

u(k1) . . . u(km) t(j1) . . . t(jn) ∂
m+2n

∂um+2n
Θ(u(0), t(0)) (3.16)

and now we identify the powers of N with equation. 3.10. For any given p > 0, we

must have:
∑

k1,...,km

∑

j1,...,jn

(m+ n)!

m!n!
u(k1) . . . u(km) t(j1) . . . t(jn) ∂m+2n

u Θ(u(0), t(0))

=
∑

r

∑

li

∑

hi

1

r!l1! . . . lr!
F

(l1)
h1

. . . F
(lr)
hr

∂
P

li
u Θ(u(0), t(0)) (3.17)

where in the first sum, the indices are such that

p = 2

m
∑

i=1

ki + 2

n
∑

i=1

ji −m , ki > 0, ji > 0 (3.18)

and in the second sum

p =
r
∑

i=1

(2hi + li − 2) , li > 0, 2 − 2hi − li < 0 (3.19)

This equation defines u(k) and t(l) recursively in a unique way.

Indeed, assume that we have already computed u(1), . . . , u(q−1) and t(1), . . . , t(q−1).

Choose p = 2q − 1 in eq. 3.17:

u(q) Θ′(u(0), t(0))

=
∑

r

∑

li

∑

hi

1

r!l1! . . . lr!
F

(l1)
h1

. . . F
(lr)
hr

∂
P

li
u Θ(u(0), t(0))

−
∑

k1,...,km

∑

j1,...,jn

(m+ n)!

m!n!
u(k1) . . . u(km) t(j1) . . . t(jn) ∂m+2n

u Θ(u(0), t(0)) (3.20)

where in the first sum we have 2q − 1 =
∑r

i=1(2hi + li − 2), li > 0, 2 − 2hi − li < 0, and

in the second sum we have 2q − 1 = 2
∑m

i=1 ki + 2
∑n

i=1 ji −m, which implies ki < q and

ji < q, i.e. all the terms in the r.h.s. are known from the recursion hypothesis. We have

thus determined u(q). Then, let p = 2q, we have:

t(q) Θ′′(u(0), t(0)) (3.21)

=
∑

r

∑

li

∑

hi

1

r!l1! . . . lr!
F

(l1)
h1

. . . F
(lr)
hr

∂
P

li
u Θ(u(0), t(0))

−
∑

k1,...,km

∑

j1,...,jn

(m+ n)!

m!n!
u(k1) . . . u(km) t(j1) . . . t(jn) ∂m+2n

u Θ(u(0), t(0))
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where in the first sum we have 2q =
∑r

i=1(2hi + li − 2), li > 0, 2 − 2hi − li < 0, and in the

second sum we have (m,n) 6= (0, 1), 2q = 2
∑m

i=1 ki + 2
∑n

i=1 ji −m, which implies ki ≤ q

and ji < q, i.e. all the terms in the r.h.s. are known from the recursion hypothesis. We

have thus determined t(q).

Therefore we have:

Ẑ(γ) = Z(ǫ∗) Θ



NF ′
0 +

∑

k

N1−2ku(k), iπτ +
∑

j

N−2jt(j)



 (3.22)

It would be interesting to understand how this formula matches the tau-function ob-

tained from integrability properties [2].

4 Holomorphic anomaly equations

One may observe that all the terms with even powers of N in formula eq. 3.10 have already

appeared in another context, in topological string theory [34], and more precisely the so

called ”holomorphic anomaly equations” [8].

Holomorphic anomaly equations are about modular invariance versus holomorphicity.

Let us briefly sketch the idea. String theory partition functions represent ”integrals”

over the set of all Riemann surfaces with some conformal invariant weight. In other words,

they are integrals over moduli spaces of Riemann surfaces of given topology, and topological

strings are integrals with a topological weight, they compute intersection numbers (see [34,

36] for introduction to topological strings).

Moduli spaces can be compactified by adding their ”boundaries”, which correspond

to degenerate Riemann surfaces (for instance when a non contractible cycle gets pinched).

The integrals have thus boundary terms, which can be represented by δ-functions, and

δ-functions are not holomorphic. In other words, string theory partition functions contain

non-holomorphic terms which count degenerate Riemann surfaces.

On the other hand, if one decides to integrate only on non-degenerate surfaces, one

gets holomorphic patition functions, but not modular invariant, because the boundaries of

the moduli spaces are associated to a choice of pinched cycles. Modular invariant means

independent of a choice of cycles.

To summarize, the holomorphic partition function is obtained after a choice of bound-

aries, i.e. a choice of a symplectic basis of non contractible cycles Ai∩Bj = δi,j, and cannot

be modular invariant. The modular invariance is restored by adding the boundaries, but

this breaks holomorphicity.

There is thus a relationship between holomorphicity and modular invariance.

Let Fg be the partition function corresponding to the moduli space of non-degenerate

Riemann surfaces of genus g, i.e. Fg is holomorphic but not modular invariant (it assumes a

choice of a basis of cycles Ai, Bi, i = 1, . . . , g), and let F̂g be the partition function including

degenerate surfaces, i.e. non holomorphic but modular invariant. The holomorphic anomaly
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equation discovered by [8], states that:

∂F̂g =
1

2
∂κ

(

F̂ ′′
g−1 +

g−1
∑

h=1

F̂ ′
hF̂

′
g−h

)

(4.1)

where κ is the Zamolodchikov Kähler metric symmetric matrix:

κ = (τ − τ)−1 (4.2)

It was found in [1, 8, 19] that:

Ẑ = e
P

g N2−2g F̂g

= e
P

g N2−2gFg
∑

l

∑

k

∑

li>0

∑

hi>1−
li
2

N
P

i(2−2hi−li)

k!l1! . . . lk!

F
(l1)
h1

. . . F
(lk)
hk

(2l − 1)!! κl δ2l−
P

li (4.3)

Remember that we use tensorial notations, and

(2l − 1)!! κl F
(l1)
h1

. . . F
(lk)
hk

(4.4)

means in fact a sum of (2l − 1)!! terms containing all the possible pairings of 2l indices of

the matrix κ, with the 2l indices of the tensors F
(li)
hi

.

For example to order N−2, i.e. g = 2 we have:

F̂2 = F2 + κ

(

F ′′
1

2
+

(F ′
1)

2

2

)

+ 3κ2

(

F ′′′′
0

4!
+ 2

F ′
1 F

′′′
0

2 3!

)

+ 15κ3

(

(F ′′′
0 )2

2 3! 3!

)

(4.5)

where the last term 15κ3 (F ′′′
0 )2 contains two topologically inequivalent types of pairings

among the indices:

15κ3 (F ′′′
0 )2 →

∑

i1,i2,i3,i4,i5,i6

9 κi1,i2κi3,i4κi5,i6

∂3F0

∂ǫi1∂ǫi2∂ǫi3

∂3F0

∂ǫi4∂ǫi5∂ǫi6

+6 κi1,i4κi2,i5κi3,i6

∂3F0

∂ǫi1∂ǫi2∂ǫi3

∂3F0

∂ǫi4∂ǫi5∂ǫi6
(4.6)

This equation can be diagrammatically represented as follows [1]:

F̂2 = +
1

2
+

1

2
+

1

8
+

1

2

+
1

8
+

1

12
(4.7)

where each term represents a possible degeneracy of a genus 2 Riemann surface (imagine

each link contracted to a point). The prefactor is 1/#Aut, i.e. the inverse of the number

of automorphisms, for instance in the last graph we have a Z2 symmetry by exchanging

the 2 spheres, and a σ3 symmetry from permuting the 3 endpoints of the edges, i.e. 12 =

#(Z2 × σ3) automorphisms.

Formally, eq. 4.3 is very similar to eq. 3.10, with the identification:

(2k − 1)!! κk → Θ(2k) (4.8)
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Proof: eq. 4.3 is the Wick theorem expansion of the following integral [1, 19]:

Z(ǫ∗, κ) = e
P

h N2−2hFh(ǫ∗,κ)

=

∫

dη eF (η)−N2(η−ǫ∗)F ′

0−
N2

2
(η−ǫ∗)F ′′

0 (η−ǫ∗)−N2iπ(η−ǫ∗)κ−1(η−ǫ∗)

= Z(ǫ∗)

∫

dη e
P

l>0

P

h>1−l/2
N2−2h

l!
F

(l)
h (η−ǫ∗)l−N2iπ(η−ǫ∗)κ−1(η−ǫ∗)

= Z(ǫ∗)
∑

k

∑

li>0

∑

hi>1−li/2

N
P

i 2−2hi

k!l1! . . . lk!
F

(l1)
h1

. . . F
(lk)
hk

∫

dη (η − ǫ∗)
P

li e−N2iπ(η−ǫ∗)κ−1(η−ǫ∗) (4.9)

i.e.

Z(ǫ∗, κ) = Z(ǫ∗)
∑

k

∑

li

∑

hi

N
P

i(2−2hi−li)

k!l1! . . . lk!
F

(l1)
h1

. . . F
(lk)
hk

∂
P

lif

∂u
P

li

∣

∣

∣

∣

∣

u=0,t=− 1
2
κ−1

(4.10)

where f(u, t) is nearly the same as Θ except that we have an integral instead of a sum over

integers:

f(u, t) =

∫

dǫ eN(ǫ−ǫ∗)u eN2(ǫ−ǫ∗)t(ǫ−ǫ∗) e2iπN ǫν

= e2iπN ǫ∗ν

∫

dǫ eNǫ(u+2iπν) eN2ǫtǫ

= e2iπN ǫ∗ν e−
1
4

(u+2iπν)t−1(u+2iπν) (4.11)

It also satisfies:
∂f

∂t
=
∂2f

∂u2
(4.12)

It is clear that:

∂2l+1f

∂u
P

li

∣

∣

∣

∣

u=0,t=− 1
2
κ−1

= 0 ,
∂2lf

∂u
P

li

∣

∣

∣

∣

u=0,t=− 1
2
κ−1

= (2l − 1)!! κl (4.13)

which proves our claim eq. 4.8.

This analogy between convergent integrals obtained by summing over filling fractions,

and holomorphic anomaly equations is puzzling, and it would be worth getting some un-

derstanding of that fact.

5 Background independence

So far, ǫ∗ was chosen arbitrary, and eq. 3.10, eq. 3.22 and the property 4.8 hold indepen-

dently of the choice of ǫ∗. Indeed Ẑ(γ) does not depend at all on a choice of ǫ∗.

If we take eq. 3.10 as a definition of a string theory partition function, it seems at first

sight that it depends on ǫ∗, but in fact it does not. Those facts are related to the so-called

”background independence” problem in string theory [38].
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From [6], it should be expected that if we choose ǫ∗ such that the spectral curve has

the Boutroux property:

Boutroux property : ∀C , Re

∮

C

ydx = 0 (5.1)

then, the formal series
∑

g N
2−2gFg as well as the Θ-sums in eq. 3.10 and eq. 3.22, should

be convergent series, and thus we really have an asymptotic expansion instead of only an

asymptotic series. However, this fact is not proved yet (except for the 1-matrix model).

Boutroux curves in particular, are such that:

ǫ∗ =
1

2iπ

∮

A

ydx ∈ R
g , ReF ′

0 = Re

∮

B

ydx = 0 (5.2)

Boutroux curves can be obtained as follows: Notice that ReF ′′
0 = −π Imτ < 0 (the imag-

inary part of the Riemann matrix of periods is always positive, see [27, 28]), and thus

−ReF0 is a convex function on ǫ∗ ∈ R
g, therefore it has a minimum in each cell of the

moduli space. The minimum clearly satisfies eq. 5.2. In other words there should be one

Boutroux curve in each cell of the moduli space of the spectral curve. One may expect

that each cell corresponds to a possible connectivity pattern of the generalized path γ.

Notice that if the potentials are real, and the filling fraction ǫ∗ is real, then F0 is real

as well, and the Boutroux condition becomes F ′
0 = 0.

6 Conclusion

In this article, we have improved the asymptotic (conjectured) formula of [9] for matrix

integrals to all orders. We have also found an interesting connection between this expan-

sion and combinatoric geometry of degenerate Riemann surfaces, through the holomorphic

anomaly equation.

The relationship between higher genus g > 0 formal matrix integrals and nodal discrete

surfaces was already known [9, 18], and here we see that there is also a relationship with

nodal Riemann surfaces. In fact, so far all intersection numbers in Kontsevich integral [22],

or Weil-Petersson volumes [25, 26], were computed with genus zero (g = 0) spectral curve

formal matrix models. This works tends to show that higher genus spectral curves have to

do with nodal surfaces. This relationship needs to be further investigated.
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